\(\int \frac {(e x)^m (A+B x^n) (c+d x^n)}{a+b x^n} \, dx\) [5]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [C] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 29, antiderivative size = 120 \[ \int \frac {(e x)^m \left (A+B x^n\right ) \left (c+d x^n\right )}{a+b x^n} \, dx=\frac {B d x^{1+n} (e x)^m}{b (1+m+n)}+\frac {(b B c+A b d-a B d) (e x)^{1+m}}{b^2 e (1+m)}+\frac {(A b-a B) (b c-a d) (e x)^{1+m} \operatorname {Hypergeometric2F1}\left (1,\frac {1+m}{n},\frac {1+m+n}{n},-\frac {b x^n}{a}\right )}{a b^2 e (1+m)} \]

[Out]

B*d*x^(1+n)*(e*x)^m/b/(1+m+n)+(A*b*d-B*a*d+B*b*c)*(e*x)^(1+m)/b^2/e/(1+m)+(A*b-B*a)*(-a*d+b*c)*(e*x)^(1+m)*hyp
ergeom([1, (1+m)/n],[(1+m+n)/n],-b*x^n/a)/a/b^2/e/(1+m)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {584, 20, 30, 371} \[ \int \frac {(e x)^m \left (A+B x^n\right ) \left (c+d x^n\right )}{a+b x^n} \, dx=\frac {(e x)^{m+1} (A b-a B) (b c-a d) \operatorname {Hypergeometric2F1}\left (1,\frac {m+1}{n},\frac {m+n+1}{n},-\frac {b x^n}{a}\right )}{a b^2 e (m+1)}+\frac {(e x)^{m+1} (-a B d+A b d+b B c)}{b^2 e (m+1)}+\frac {B d x^{n+1} (e x)^m}{b (m+n+1)} \]

[In]

Int[((e*x)^m*(A + B*x^n)*(c + d*x^n))/(a + b*x^n),x]

[Out]

(B*d*x^(1 + n)*(e*x)^m)/(b*(1 + m + n)) + ((b*B*c + A*b*d - a*B*d)*(e*x)^(1 + m))/(b^2*e*(1 + m)) + ((A*b - a*
B)*(b*c - a*d)*(e*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/n, (1 + m + n)/n, -((b*x^n)/a)])/(a*b^2*e*(1 + m))

Rule 20

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[b^IntPart[n]*((b*v)^FracPart[n]/(a^IntPart[n]
*(a*v)^FracPart[n])), Int[u*(a*v)^(m + n), x], x] /; FreeQ[{a, b, m, n}, x] &&  !IntegerQ[m] &&  !IntegerQ[n]
&&  !IntegerQ[m + n]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 371

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hyperg
eometric2F1[-p, (m + 1)/n, (m + 1)/n + 1, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 584

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^
(r_.), x_Symbol] :> Int[ExpandIntegrand[(g*x)^m*(a + b*x^n)^p*(c + d*x^n)^q*(e + f*x^n)^r, x], x] /; FreeQ[{a,
 b, c, d, e, f, g, m, n}, x] && IGtQ[p, -2] && IGtQ[q, 0] && IGtQ[r, 0]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {(b B c+A b d-a B d) (e x)^m}{b^2}+\frac {B d x^n (e x)^m}{b}+\frac {(A b-a B) (b c-a d) (e x)^m}{b^2 \left (a+b x^n\right )}\right ) \, dx \\ & = \frac {(b B c+A b d-a B d) (e x)^{1+m}}{b^2 e (1+m)}+\frac {(B d) \int x^n (e x)^m \, dx}{b}+\frac {((A b-a B) (b c-a d)) \int \frac {(e x)^m}{a+b x^n} \, dx}{b^2} \\ & = \frac {(b B c+A b d-a B d) (e x)^{1+m}}{b^2 e (1+m)}+\frac {(A b-a B) (b c-a d) (e x)^{1+m} \, _2F_1\left (1,\frac {1+m}{n};\frac {1+m+n}{n};-\frac {b x^n}{a}\right )}{a b^2 e (1+m)}+\frac {\left (B d x^{-m} (e x)^m\right ) \int x^{m+n} \, dx}{b} \\ & = \frac {B d x^{1+n} (e x)^m}{b (1+m+n)}+\frac {(b B c+A b d-a B d) (e x)^{1+m}}{b^2 e (1+m)}+\frac {(A b-a B) (b c-a d) (e x)^{1+m} \, _2F_1\left (1,\frac {1+m}{n};\frac {1+m+n}{n};-\frac {b x^n}{a}\right )}{a b^2 e (1+m)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.79 \[ \int \frac {(e x)^m \left (A+B x^n\right ) \left (c+d x^n\right )}{a+b x^n} \, dx=\frac {x (e x)^m \left (\frac {b B c+A b d-a B d}{1+m}+\frac {b B d x^n}{1+m+n}+\frac {(-A b+a B) (-b c+a d) \operatorname {Hypergeometric2F1}\left (1,\frac {1+m}{n},\frac {1+m+n}{n},-\frac {b x^n}{a}\right )}{a (1+m)}\right )}{b^2} \]

[In]

Integrate[((e*x)^m*(A + B*x^n)*(c + d*x^n))/(a + b*x^n),x]

[Out]

(x*(e*x)^m*((b*B*c + A*b*d - a*B*d)/(1 + m) + (b*B*d*x^n)/(1 + m + n) + ((-(A*b) + a*B)*(-(b*c) + a*d)*Hyperge
ometric2F1[1, (1 + m)/n, (1 + m + n)/n, -((b*x^n)/a)])/(a*(1 + m))))/b^2

Maple [F]

\[\int \frac {\left (e x \right )^{m} \left (A +B \,x^{n}\right ) \left (c +d \,x^{n}\right )}{a +b \,x^{n}}d x\]

[In]

int((e*x)^m*(A+B*x^n)*(c+d*x^n)/(a+b*x^n),x)

[Out]

int((e*x)^m*(A+B*x^n)*(c+d*x^n)/(a+b*x^n),x)

Fricas [F]

\[ \int \frac {(e x)^m \left (A+B x^n\right ) \left (c+d x^n\right )}{a+b x^n} \, dx=\int { \frac {{\left (B x^{n} + A\right )} {\left (d x^{n} + c\right )} \left (e x\right )^{m}}{b x^{n} + a} \,d x } \]

[In]

integrate((e*x)^m*(A+B*x^n)*(c+d*x^n)/(a+b*x^n),x, algorithm="fricas")

[Out]

integral((B*d*x^(2*n) + A*c + (B*c + A*d)*x^n)*(e*x)^m/(b*x^n + a), x)

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 4.67 (sec) , antiderivative size = 872, normalized size of antiderivative = 7.27 \[ \int \frac {(e x)^m \left (A+B x^n\right ) \left (c+d x^n\right )}{a+b x^n} \, dx=\text {Too large to display} \]

[In]

integrate((e*x)**m*(A+B*x**n)*(c+d*x**n)/(a+b*x**n),x)

[Out]

A*a**(m/n + 1/n)*a**(-m/n - 1 - 1/n)*c*e**m*m*x**(m + 1)*lerchphi(b*x**n*exp_polar(I*pi)/a, 1, m/n + 1/n)*gamm
a(m/n + 1/n)/(n**2*gamma(m/n + 1 + 1/n)) + A*a**(m/n + 1/n)*a**(-m/n - 1 - 1/n)*c*e**m*x**(m + 1)*lerchphi(b*x
**n*exp_polar(I*pi)/a, 1, m/n + 1/n)*gamma(m/n + 1/n)/(n**2*gamma(m/n + 1 + 1/n)) + A*a**(-m/n - 2 - 1/n)*a**(
m/n + 1 + 1/n)*d*e**m*m*x**(m + n + 1)*lerchphi(b*x**n*exp_polar(I*pi)/a, 1, m/n + 1 + 1/n)*gamma(m/n + 1 + 1/
n)/(n**2*gamma(m/n + 2 + 1/n)) + A*a**(-m/n - 2 - 1/n)*a**(m/n + 1 + 1/n)*d*e**m*x**(m + n + 1)*lerchphi(b*x**
n*exp_polar(I*pi)/a, 1, m/n + 1 + 1/n)*gamma(m/n + 1 + 1/n)/(n*gamma(m/n + 2 + 1/n)) + A*a**(-m/n - 2 - 1/n)*a
**(m/n + 1 + 1/n)*d*e**m*x**(m + n + 1)*lerchphi(b*x**n*exp_polar(I*pi)/a, 1, m/n + 1 + 1/n)*gamma(m/n + 1 + 1
/n)/(n**2*gamma(m/n + 2 + 1/n)) + B*a**(-m/n - 3 - 1/n)*a**(m/n + 2 + 1/n)*d*e**m*m*x**(m + 2*n + 1)*lerchphi(
b*x**n*exp_polar(I*pi)/a, 1, m/n + 2 + 1/n)*gamma(m/n + 2 + 1/n)/(n**2*gamma(m/n + 3 + 1/n)) + 2*B*a**(-m/n -
3 - 1/n)*a**(m/n + 2 + 1/n)*d*e**m*x**(m + 2*n + 1)*lerchphi(b*x**n*exp_polar(I*pi)/a, 1, m/n + 2 + 1/n)*gamma
(m/n + 2 + 1/n)/(n*gamma(m/n + 3 + 1/n)) + B*a**(-m/n - 3 - 1/n)*a**(m/n + 2 + 1/n)*d*e**m*x**(m + 2*n + 1)*le
rchphi(b*x**n*exp_polar(I*pi)/a, 1, m/n + 2 + 1/n)*gamma(m/n + 2 + 1/n)/(n**2*gamma(m/n + 3 + 1/n)) + B*a**(-m
/n - 2 - 1/n)*a**(m/n + 1 + 1/n)*c*e**m*m*x**(m + n + 1)*lerchphi(b*x**n*exp_polar(I*pi)/a, 1, m/n + 1 + 1/n)*
gamma(m/n + 1 + 1/n)/(n**2*gamma(m/n + 2 + 1/n)) + B*a**(-m/n - 2 - 1/n)*a**(m/n + 1 + 1/n)*c*e**m*x**(m + n +
 1)*lerchphi(b*x**n*exp_polar(I*pi)/a, 1, m/n + 1 + 1/n)*gamma(m/n + 1 + 1/n)/(n*gamma(m/n + 2 + 1/n)) + B*a**
(-m/n - 2 - 1/n)*a**(m/n + 1 + 1/n)*c*e**m*x**(m + n + 1)*lerchphi(b*x**n*exp_polar(I*pi)/a, 1, m/n + 1 + 1/n)
*gamma(m/n + 1 + 1/n)/(n**2*gamma(m/n + 2 + 1/n))

Maxima [F]

\[ \int \frac {(e x)^m \left (A+B x^n\right ) \left (c+d x^n\right )}{a+b x^n} \, dx=\int { \frac {{\left (B x^{n} + A\right )} {\left (d x^{n} + c\right )} \left (e x\right )^{m}}{b x^{n} + a} \,d x } \]

[In]

integrate((e*x)^m*(A+B*x^n)*(c+d*x^n)/(a+b*x^n),x, algorithm="maxima")

[Out]

((b^2*c*e^m - a*b*d*e^m)*A - (a*b*c*e^m - a^2*d*e^m)*B)*integrate(x^m/(b^3*x^n + a*b^2), x) + (B*b*d*e^m*(m +
1)*x*e^(m*log(x) + n*log(x)) + (A*b*d*e^m*(m + n + 1) + (b*c*e^m*(m + n + 1) - a*d*e^m*(m + n + 1))*B)*x*x^m)/
((m^2 + m*(n + 2) + n + 1)*b^2)

Giac [F]

\[ \int \frac {(e x)^m \left (A+B x^n\right ) \left (c+d x^n\right )}{a+b x^n} \, dx=\int { \frac {{\left (B x^{n} + A\right )} {\left (d x^{n} + c\right )} \left (e x\right )^{m}}{b x^{n} + a} \,d x } \]

[In]

integrate((e*x)^m*(A+B*x^n)*(c+d*x^n)/(a+b*x^n),x, algorithm="giac")

[Out]

integrate((B*x^n + A)*(d*x^n + c)*(e*x)^m/(b*x^n + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(e x)^m \left (A+B x^n\right ) \left (c+d x^n\right )}{a+b x^n} \, dx=\int \frac {{\left (e\,x\right )}^m\,\left (A+B\,x^n\right )\,\left (c+d\,x^n\right )}{a+b\,x^n} \,d x \]

[In]

int(((e*x)^m*(A + B*x^n)*(c + d*x^n))/(a + b*x^n),x)

[Out]

int(((e*x)^m*(A + B*x^n)*(c + d*x^n))/(a + b*x^n), x)